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This paper presents a discussion of some aspects of the linear stability problem 
for the asymptotic suction profile. An exact solution of the inviscid equation 
is first obtained in terms of the usual hypergeometric function and its analytical 
continuation. This exact solution provides both a corrected version of an earlier 
treatment by Freeman and an independent check on the more general method 
suggested for solving the inviscid equation numerically. Various approximations 
to the characteristic equation, and hence to the curve of neutral stability, are 
then considered. In  particular, it is found that, in a consistent asymptotic 
treatment of the related adjoint problem, at  least one viscous correction to the 
singular inviscid solution must be considered. Based on the present results for the 
adjoint problem, it is suggested that Tollmien’s original treatment of the viscous 
corrections must be slightly modified. 

1. Introduction 
In  the study of the stability of laminar boundary layers, the well-known 

asymptotic suction profile has played an important role. Because of its simple 
analytical form, this flow permits a more precise discussion of its stability proper- 
ties than most other boundary-layer flows for which the velocity distribution is 
usually defined only numerically. The stability of this flow was first studied by 
Pretsch (1942) and by Bussmann & Miinz (1942), and their results were later 
reviewed and extended by Freeman (Chiarulli & Freeman 1948). In  particular, 
Freeman showed that the inviscid form of the Orr-Sommerfeld equation can 
be transformed into the usual hypergeometric equation and thus solved exactly. 
In  spite of the fact that this is the only flow for which such an exact solution has 
been obtained, i t  is surprising that its importance has not been more widely 
recognized. Even Freeman’s solution for the curve of neutral stability, based on 
this exact solution of the inviscid equation, though widely quoted (see, for ex- 
ample, Lin 1955 or Stuart 1963) has never been published. 

The importance of this exact solution lies primarily in the understanding it 
provides of the analytical structure of the inviscid equation for the whole 
class of flows of the boundary-layer type. In  general, however, the required 
solutions of the inviscid equation can only be obtained by some approximate 
method, one of the most powerful of which would appear to be the use of high- 
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speed, numerical computation. Recently, in connexion with the development 
of such numerical methods, a new calculation of the neutral curve for the 
asymptotic suction profile was made but the results so obtained were found to 
be in substantial disagreement with Freeman’s results in the neighbourhood 
of the minimum critical Reynolds number. Similar calculations for plane Poiseu- 
ille flow had previously agreed so well with Lin’s (1915) results that the discrep- 
ancy found in this case was completely unexpected and too large to be easily 
explained. In  $ 2, therefore, we present a re-examination of Freeman’s solution 
which shows that an error had been made in the required analytical continuation 
of the solution. A numerical method of solving the inviscid equation, that is 
both simple and effective, is described briefly in $3, and it is then shown in $4 
that complete agreement is obtained between the analytical and numerical 
solutions. 

To complete the discussion of the neutral curve, it  is necessary to obtain 
its asymptotic behaviour for large values of the Reynolds number. For this 
purpose one must first obtain the behaviour of a particular linear combination 
of the inviscid solutions for small values of the wave-number. The required result 
is easily obtained, as shown in $ 4, by first transforming the inviscid equation into 
a first-order Riccati equation, the solution of which can then be expanded in 
powers of the wave-number. This method of dealing with the inviscid part of the 
characteristic equation is applicable not only to flows of the boundary-layer 
type but also, with minor modifications, to other classes of flows. In  addition, it 
provides a further check on the analytical and numerical solutions obtained in 
$$3 and 3. 

The exact solution of the inviscid equation obtained in $ 2 can also be usefully 
employed to study a number of further aspects of the stability problem for such 
flows. Thus, for example, in $5  we consider the related adjoint formulation of the 
problem. The solutions of the adjoint Orr-Sommerfeld equation play an im- 
portant role not only in the familiar initial-value problem (Schensted 1960) 
but also in the solution of the inhomogeneous Orr-Sommerfeld equation (Michael 
1964) and in the non-linear stability theory for parallel flows (Stuart 1960; 
Watson 1960). On an exact basis, the solution of the adjoint problem must lead 
to exactly the same neutral curve since the eigenvalues of the two problems are 
the same. But when asymptotic approximations to the eigenfunctions of the two 
problems are used, it is found (Reid 1965) that the characteristic equations and 
hence the neutral curves are not identical, even at  a comparable level of approxi- 
mation. It is important, therefore, that detailed calculations be made in at least 
one case so as to be able to assess the differences between the two approaches. 

In  this discussion of the adjoint problem, it is found that at least one viscous 
correction to the singular inviscid solution must be used. As is well known, the 
precise manner in which this viscous correction is introduced is a matter of some 
delicacy. This question is therefore examined in further detail in 3 5 where it is 
suggested that, in a consistent treatment of these viscous corrections, Toll- 
mien’s (1939) original scheme must be slightly modified. The required modifica- 
tions make little difference so far as the usual problem is concerned but they are 
clearly essential for the adjoint problem. 
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2. The analytical solution of the inviscid equation 
In  discussing the stability of the asymptotic suction profile, it  is convenient 

to work exclusively in terms of non-dimensional quantities. For this purpose 
we introduce the free-stream velocity U, as a characteristic velocity and the dis- 
placement thickness of the boundary layer L, as a characteristic length 
(L, = - v+/V,, where V, is the suction velocity with V, < 0 and constant). The 
velocity components of the basic flow can then be written in the non-dimensional 
form 

where R is the Reynolds number based on U, and L,. This basic flow is, of course, 
not 'strictly parallel' but, since aUlax G 0 and V is constant, the linearized 
disturbance equation that governs its stability can be derived with no further 
approximations beyond the usual linearization. Thus, if the disturbance stream 
function is takenin the usual form # ( y )  efa(s+f), then an easy calculation shows that 
q5 satisfies the modified Om-Sommerfeld equation 

U=l-e -v  and V = - l / R ,  (2.1) 

(P-a2)2$+ ( P - a 2 ) D $  = iaR{(U-c) (02-a2)+- U"$h}, (2 .2 )  

where D = d/dy and we have already substituted for V from equation (2.1). 
On an exact basis, therefore, the stability of the asymptotic suction profile 
is governed not by the Orr-Sommerfeld equation but by the modified equation 
( 2 . 2 ) .  The boundary conditions that must be satisfied by q5 are 

q5=$ '=0  at y = O  and q5,q5'+0 as y + + c o ,  (2.3) 

and we require, therefore, approximations to the two solutions of equation ( 2 . 2 )  
that remain bounded as y -+ + 00. 

It may be noticed that the inviscid form of equation ( 2 . 2 )  is identical with the 
inviscid form of the Orr-Sommerfeld equation and, at the usual level of asymp- 
totic approximation, one of the required solutions is simply the solution of the 
inviscid equation that remains bounded as y --f +a. We shall denote this 
solution by @(y)  and, to be definite, require that it be normalized by the condition 
@(y,) = 1, where y, is the point where U - c = 0. When considered as an asymp- 
totic approximation to one of the bounded solutions of either equation (2 .2 )  or 
the Orr-Sommerfeld equation, however, this solution provides avalid approxima- 
tion only in the region of the complex y-plane for which - grn < arg (y - y,) < irn 
excluding the immediate neighbourhood of the critical point. The behaviour of 
@(y) in the 'viscous sector' Qrn < arg (y- y,) < &r is discussed in further detail 
in 3 5 below. 

Consider then the inviscid form of equation ( 2 . 2 )  with U(y) given by equation 

(2.1) (l-e-y-c)(q5"-a2q5)+e-~q5 = 0. (2.4) 

This equation has a regular singular point at y = yc, where y,  = -log (1 - c),  
and an irregular singular point at y = 00. As Freeman has shown, however, the 
transformation 

$(y) = exp{-a(y-y,))f(t), where t = e-y/(l-c),  (2 .5 )  

leads to the equation t( 1 - t ) f "  + (1 + 3a) (1 - t ) f ' +  f = 0, 
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which is of hypergeometric type. This equation has three singular points a t  
t = 0, 1, and co but they are now all regular. The transformation t = e-”/( 1 - c )  
maps the point y = 0 into the point t = to = I/(  1 - c) > 1 for 0 < c < 1, the 
point y = y, into the point t = t, = 1, and the point y = + co into the point t = 0. 

We thus require the solution of equation (2.6) that is regular in the neighbour- 
hood of t = 0. This solution must clearly be a constant multiple of the usual 
hypergeometric function 

where p = a + ( l + a 2 ) 9  , q=a-( l+aZ)&, and T =  1+2a. (2.8) 

Since (for a real) p + Q - r = - 1 < 0, the series (2.7) is absolutely convergent for 
I t /  < 1 and, to satisfy the prescribed normalization condition, we therefore 
take the solution in the form 

where, by the Gauss formula, 

(2.10) 

Since it will later be necessary to evaluatef andf’ at  t = to > 1, it is necessary 
to obtain the analytical continuation of (2.9) into the region It( > 1. The hyper- 
geometric function (2.7) has a branch point a t  t = 1 and, in the usual treat- 
ments of this function, a cut is made in the t-plane from 1 to 00 along the positive 
real axis. Since this inviscid solution provides a valid asymptotic approximation 
only in the sector -;m < arg (y-y,) < in of the complex y-plane, we must 
choose a path in the y-plane running from 0 to +CO that lies below y,. Such a 
path in the y-plane corresponds to a path in the t-plane that runs from to to 0 
and lies above t, = 1. We shall suppose therefore that the branch cut from 1 to co 
in the t-plane lies below the real axis. In  the present problem, since p i - Q - r  
is a negative integer, the required analytical continuation contains logarithmic 
terms and can be written in the form (see, for example, Erddyi, Magnus, Ober- 
hettinger & Tricomi 1953) 

(2.11) 
(l-t),+l 

f(t) = 1-(1-t)P(p+l ,q+f;2;1-t) log(l-t ) -  A ,  (n+ l ) ! ,  
n=O 

where 

x {$(p+ 1 +n) + $(Q+ 1 + n )  - $(n + 1)  - $(n+ 2 ) )  (2.12) 

and $(z) = r’(z)/I’(z) is the digamma function. This form of the solution is 
valid in the region J 1 - t J  < 1 of the cut t-plane and thus gives the required con- 
tinuation provided c < +, i.e. to < 2. In  Freeman’s version of equation (2.11) 
some additional terms were erroneously included; these terms are, in fact, for- 
mally zero but this was not recognized and led to incorrect results at  a later stage 
in his calculations. 
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For the asymptotic suction profile, it  can easily be verified a posteriori that 
the values of c along the neutral curve are nowhere large and this fact suggests 
that the values off and f ’  a t  t = to can conveniently be obtained by expansions 
in powers of c. The final expressions are substantially simpler, however, if one 
uses the small parameter e = c / (  1 - c) rather than c itself. In  keeping with a path 
of integration that lies above the critical point t, = 1, if log (1 - t )  = log I 1 - t I 
for t < 1 and real, then log (1 - t )  must be taken as log 11 - tl - ni for t > 1 
and real. Thus, in particular, we have log (1 - to) = log e- 7ri. The required ex- 
pansions for f (to) and f ’ ( to)  are then found to be 

(2.13) 
and 

f ( t o )  = 1 + (e - a@) (log e - ni) + ho(a) E -  hl(a) e2 + O(e3 log e) 

f ’ ( to)  = (1 +log E - 7ri) (1 - a€ + gaE2 + $ a V )  - (log 8 - ni) (a€ - a62 - +aV)  

+ h 0 ( a ) - 2 h 1 ( a ) € + 3 h 2 ( a ) ~ 2 + O ( ~ 3 1 ~ g € ) ,  (2.14) 

(2.15) I where ho(a) = $(1,+1)+$(!7+ 1)-$(2)--$(1)7 

and hz(a) = (+a + w) PAP + 3) + 
hi(@-) = a[$@ + 2) + W+ 2 )  - $(3) - $(2)I, 

+ 3) - ~ ( 4 )  - $(3)1. 

The expressions for f(t,) and f’(to) can easily be evaluated since only tables of 
the digamma function are required (see, for example, Davis 1933). 

Since a and c are of the same order, and hence both small, Freeman has 
suggested the further approximation in which the coefficients (2.15) are also 
expanded in powers of a and only those terms in f ( t o )  andf’(t,) up to amen with 
m + n = 3 are retained. This approximation then leads to the simple formulas 

f(t,) + 1 + (e - as2) (log E - ni) - (€/a) - +e + Tlae + Tza2c + ae2 (2.16) 

and f’(t,) + (1 + loge - mi) (1  - a€ + &oz2) - (ae - me2) (log E - ni) 
- (i/a) - g + (a: - T~ + + a 3 ~  + 2ae - iae2,  (2.17) 

where T 1 -  - 1 ST 2-$, Tz = +f-2<(3), 3 = &T*+&, (2.18) 

and <(z) is the Riemann Zeta-function. 
This solution of the inviscid equation is unusual in that the required analytical 

continuation can be obtained exactly and hence that the expansions (2.13) 
and (2.14) can easily be extended to arbitrarily high orders in E .  For other flows, 
for which such an exact solution cannot be obtained, it is necessary to resort to 
some approximate method. The numerical method described in the following 
section would appear to be particularly useful in such cases. 

3. The numerical solution of the inviscid equation 
In  this section we will describe a numerical method of solving the inviscid 

equation to obtain the bounded solution that we have called cD(y). Sufficiently 
near the critical point the solutions of the inviscid equation can be taken in the 
form first given by Tollmien (1929): 

$LAY) = (Y - Y,) U Y  - Y C ) ,  

&(Y) = PB(Y - Y J  + (u:/u:) $ A Y )  1% (Y - Y A  

(3.1) 

(3.2) 
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where PA and P, are power series in y - ye, the leading terms of which are unity. 
We shall also suppose that I $ ~  contains no multiple of i.e. that the coefficient 
of y -  yc in PB is zero. The required solution @ must, therefore, be a linear com- 
bination of and q5,, and the requirement that CD(yc) = 1 means that it must be 
of the form 

The constant A ,  which may, in general, depend on the parameters a and c,  must 
be determined so that CD remains bounded as y j .  +a. This is the central diffi- 
culty in the numerical approach to the determination of CD. 

The inviscid equation for this problem has regular singular points at 
y = yc 2mmi (m = 0 , 1 , 2 ,  . . .) so that, in general, the power series PA and PB 
are convergent only for 1 y - ycl < 271 and the constant A cannot be determined 
therefore from the solutions (3.1) and (3.2) alone. By changing the independent 
variable to s = e-u, however, a convenient representation for @ can be obtained 
that is valid in the neighbourhood of y = +a. The inviscid equation then be- 
comes 

(3.3) CD (Y) = + #B(Y)* 

(3.4) (U-c)(s2qJ+s&a2(b)- u"q5 = 0, 

where a dot denotes differentiation with respect to s. The point s = 0 is now a 
regular singular point of equation (3.4) with exponents k a;  the solution of this 
equation that is bounded in the neighbourhood of s = 0 must therefore be of the 
form saP,(s), where P,(s) is also a power series in s with a leading term of unity. 
For some purposes it is convenient to obtain P,(s) as the solution of the differ- 
ential equation 

(u-C){s2P,+8(1+2a)P,)-uUI~P, = 0 (3.5) 

that satisfies the initial conditions 

P,(O) = 1, P,(O) = - 1 / ( 1 + 2 a ) ( l - c ) .  (3.6) 

where B is a second constant that will also, in general, depend on both a and c. 
This representation for @ is valid in the interval 0 < s < 1 - c or 0 < y - yc < + CO. 

For other velocity profiles, however, this representation may not hold over the 
whole of this range. 

We thus have two overlapping representations for @, and the constants A 
and B appearing in equations (3.3) and (3.7) can now be determined by requiring 
that @ and CD' be continuous at some point in their common domain of validity. 
The matching point was chosen, for convenience, t o  be at y = 1, s = l j e .  Thus, 
A and B are determined by the pair of algebraic equations 

Aq5A(1) + = Be-a%(l/e) 

and A(bL(l)+ q5&(1) = -Be-'{aP,(l/e) +e--lPm(l/e)). ( 3 4  

The continuation of the solution (3.3) to the interval y < yc, by a path lying 
below ye, then provides the required values of @ and @' at the boundary y = 0. 



Stability of the asymptotic suction profile 721 

The computational procedures actually used to obtain the values of CD and 
CD’ at y = 0 are similar to the ones suggested by Conte & Miles (1959) and, there- 
fore, need only be described briefly. Numerical integration was used to obtain the 
values of $A and PB (and hence $B) and their derivatives at y = 0 and 1. TO 
obtain the required initial values, the power series for $A and PB were first 
evaluated at the points y:(say), where y,+ =- y, and y; < y,. A fourth-order 
Runge-Kutta procedure was then used to integrate from y,+ to 1 and from y; 
to  0. Since the coefficients in the power series PA and PB satisfy simple recursion 
relationships, the summation of these series by an electronic computer is not 
difficult. Furthermore, some preliminary experimentation showed that the 
terms in these series are rapidly decreasing even for 13- y,] as large as 0.25, 
and it is not necessary therefore to choose the initial points y$ particularly close 
to y,. In  the case of P, and P,, it was found that direct summation of the series 
was the best way to compute P,( l /e)  and Pw( l/e). 

In the case of the asymptotic suction profile, it is possible to obtain exact 
expressions for the constants A and B from the analytical solution given in $ 2 ,  
and these results provide a further check on the purely numerical approach 
described above. The constant A ,  for example, is clearly the coefficient of y - yc 
in the expansion of the regular part of exp { - a(y - y,)}f(t), wheref(t) is given by 
equation (2.11). A simple calculation then gives 

A(a)  = 1 - 27- a - $(p + 1) - $(g+ I),  (3.9) 

where y = 0.5772.. . is Euler’s constant. For small values of a we have 

(3.10) 
1 

A (a) = - + & - (in2 - 2 )  a + O(a2). 
a 

Similarly, from equations (2.9) and (2.10) we have 

(3.11) 

Thus, in this case, A depends only on a, but B depends on both a and c. 

4. The solution of the characteristic equation 
The inviscid solution @(y) discussed in $62 and 3 provides a valid asymptotic 

approximation to one of the bounded solutions of equation (2.2) in the region of 
the complex y-plane for which - gn < arg (y - y,) < in excluding the immediate 
neighbourhood of the critical point. This solution can be modified, however, to 
provide a valid approximation in the ‘ viscous sector’ Qn < arg (y - y,) < 4. 
including a neighbourhood of the critical point, but such refinements are not 
required in a first approximation to the characteristic equation. An asymptotic 
approximation to the second bounded solution of equation (2.2) is of a viscous 
type and will be taken, as usual, as the solution of the Airy equation 

$v = iaRUA(y-y,)$” 

that is exponentially small for Jy-y,] 3 JaRUbl-Bin a sector of the complex 
y-plane that includes the positive real axis. 

46 Fluid Mech. 23 
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In  this approximation, the characteristic equation can be written in the form 
(see, for example, Lin 1955, p. 40) 

where 

w - 1  
= F(z ) ,  

(1 +h)w (4-1) 

(4.2) 

and P(z) is the Tietjens function with argument x = (aRU$yc. The complex 
parameter w(a, c) that appears in the characteristic equation (4.1) can be express- 
ed in terms of the exact solution of § 2 in the form 

where to = l /( l  - c )  andfis given by equation (2.11). 
The left-hand side of equation (4.1) depends only on the solution of the inviscid 

equation and hence only on a and c, whereas the right-hand side depends only 
on x .  The curve of neutral stability can therefore be obtained in a direct manner 
by means of the usual graphical procedure in which the real and imaginary 
parts of equation (4.1) are drawn on the same graph as shown in figure 1. The 
inviscid lines a = const. and c = const. were obtained by the numerical procedure 

0 0.1 0’ 0-3 

Re 

FIQURE 1. The graphical solution of the characteristic equation (4.1) for the asymptotio 
suction profile. The circled point corresponds to the minimum critical Reynolds number. 
The Tietjens function is from Miles (1960). 

described in $3. The curve of neutral stability obtained in this way is shown as 
the solid curve in figure 2, and the corresponding behaviour of the wave speed c 
is shown in figure 3. It should be emphasized here that the kink on the upper 
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FIQURE 2. The curves of neutral stability for the asymptotic suction profile. The solid 
curve is based on equation (4.1); the long-dashed curve is baaed on eqimtion (5.17); and 
the short-dashed curve is based on equation (5.24). 

0-1 5 

0.10 

c 

0.05 

0 0.05 0-10 0.1 5 0.20 

a 

FIavRE 3. The relationship between the wave-number a! and the wave-speed c along the 
neutral curves. The dashed curve is based on the adjoint characteristic equation (5.24). 
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branch of the neutral curve in figure 2 and the loop on the lower branch of the 
curve in figure 3 would not appear to have any physical significance but are merely 
a consequence of the asymptotic approximations that underlie the characteristic 
equation (4.1). This point is discussed further in $ 6  where it is suggested that if 
suitable viscous corrections are applied to the singular part of the inviscid solution 
a@), then both the kink and the loop would disappear. 

0-17 

a 

0.1 5 

0.13 

36 35 40 
RB 

43 43 

FIGURE 4. Approximations to the curve of neutral stability based on retaining terms up 
to amen in equations (2.16) and (2.17). Curve 1: na+n = 2; curve 2:  m+n = 3; curve 3: 
m + n = 4; curve 4: rn + n = 5. Curve 4 is also indistinguishable from the solution ob- 
tained by numerical integration. 

When the results just described were first obtained, it was found that the 
value of the minimum critical Reynolds number differed from Freeman's result 
by about 9 yo, and this discrepancy led to the re-examination and subsequent 
correction of Freeman's analytical solution described in $ 2. As a further check 
on both the numerical and analytical solutions of the inviscid equation, the 
expansions (2.16) and (2.17) were used to provide an independent calculation of 
R,, in the neighbourhood of Rmin. The results of this calculation are given in 
figure 4, and they show that only a few terms need be retained in the expansions 
(2.16) and (2.17) to obtain essentially complete agreement with the numerical 
solution. 
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The behaviour of the inviscid solution for small values of a 

To complete the discussion of the neutral curve, it is necessary to determine 
its asymptotic behaviour as R -+ co. For this purpose it is first necessary to obtain 
the behaviour of the inviscid solution or, more precisely, of the ratio 

@ ’ ( O ) / @ ( O )  as a+O. 

This has been done by Lin (1945) by a clever, but somewhat complicated, re- 
ordering of the terms in the Heisenberg type solutions of the inviscid equation. 
Furthermore, Lin’s result is only valid (for flows of the boundary-layer type) if, 
with a suitably chosen length scale U(y) = 1 for 1 < y < co. Both of these diffi- 
culties are avoided in the present discussion in which the inviscid equation 
is first transformed into a first-order Riccati equation, the solution of which 
can then be expanded in powers of a. This procedure, in effect, provides the 
required analytical continuation of the inviscid solution termwise in a. 

The inviscid equation can, of course, be reduced to a first-order equation in 
many different ways. For flows of the boundary-layer type, however, we find it 
convenient, following Miles (1962), to introduce the new dependent variable 

Q(y) = @/( u - c )  [ U’@ - ( u - c) @’I) 

0’ = .2( u - c)2 0 2 -  (U  - c)-2. 

w(a,c)  = 1 +CU’(O) Q(0). 

(4.4) 

(4.5) 

(4.6) 

Since @(y) N constant e--OrY as y -+ CQ, we must have @’/a -+ - a as y -f a. 

which satisfies the Riccati equation 

The inviscid parameter w(a,  c )  defined by equation (4.2) is then given by? 

The required boundary condition on Q(y) must therefore be 

Q(y) + l/a(l - c ) ~  as y -+ 00, (4.7) 

where we have used the fact that U(y) + 1 as y -+ 00. This result suggests that 
the solution of equation (4.5) can be expanded in the form 

1 W 

On substituting this expression into equation (4.5) and equating to zero the 
coefficients of like powers of a, we obtain the equations 

i 0; = (1 - c)-4 (U-C)2- ( U -  c)-2,  

i n; = a( 1 - c)-2 ( U  - c)2 no, 
n; = (1 -c)-2( u- c)2[(1 -c)2 n;+ 2Q2,], 

(4.9) 

................................................... J 

The solutions of these equations which satisfy the boundary conditions 

Q&) -+ 0 as y -+ 00 (n = 0,1,2, ...) 

f If U’(0) = 0, then this procedure must be slightly modified (cf. Hughes & Reid 1965). 
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can all be obtained by a single quadrature in the form 

T. H. Hughes and W.  H. Reid 

Qo(y) = - (1  -c)-2 Sym [ ("-")z 1 - c  - (y] u-c dy, 

i (4.10) 

Q,(y) = - (1  - c)-2 [( 1 - c)2 ( U  - c)2 Q:(y) + a( u - c)2 Q,(y)] dy, Lm 
I .................................................................................... 

where the path of integration must lie below ye. 
If we now let Q,(O) = I,(c) (n = 0,1,2,  . . .), then from equation (4.6) we have 

~ ( a ,  C )  = cU'(O)/a( 1 - c ) ~ +  1 +cU'(O) [ I ~ ( c )  + I~(c) a+ I~(c) a2+O(a3)]. (4.11) 

It is useful to note that the imaginary part of equation (4.11) can be written 
explicitly in the form 

v(a, c )  = - ncU'(0) - u;3 " [ 1 - 2a s,"' ( E c ) 2 d y + O ( a 2 ) ] .  1-c (4.12) 

Furthermore, for small values of c we have 

so that to a good approximation we can write 

v(a, c )  k - ncU'(0) U:/UA3. 

(4.13) 

(4.14) 

These results for small values of a are in agreement with Lin's (1945) results 
when suitably interpreted. 

In  the case of the asymptotic suction profile, all of the integrals I , ( c )  can be 
evaluated explicitly. For n = 0 and 1, for example, we have 

(4.15) 

and Il(c) = (l-c)-e c -4~2+3~3-2 (1 -c )4M ~ 

(l'c) 

+ ( 1 - ~ ) ~ ( 2 ~ - 3 c ~ )  log-+nni , (4.16) ( liC )I 
where 

and Li2(z) is the dilogarithm function defined by 

M (kc) = -Liz (1 - c) + inz- log2 (1 - c) - ni log (1 - c )  (4.17) 

dz. 
log(1- 

Li2(z) = - jo ___- 
2 

(4.18) 

For tables and properties of this function see, for example, Lewin (1958). The 
explicit form of 12(c) is also known but it is too lengthy to be recorded here. It 
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is also interesting to observe, however, that if lo(c),  2;(c), and I,(c) are further 
expanded in terms of the parameter e = c / ( l  -c )  as in $2, then (4.11) becomes 

~ ( a ,  C )  i ( E  + €2) a-l+ ( -slog€- + E -  .+logs+ +SZ+ 4 ~ 3 )  

+ (& - &r2e + te2 - &n2e2) a - T2m2 + ( E  + e2) ni (4.19) 

and this result, to this order, is identical with the hypergeometric solution of 

The asymptotic behaviour of the neutral curve can now be obtained by noting 
§2- 

that, as a -+ 0, equation (4.1) becomes 

Since Re {I,(c))  = - [cU'(O)]-~+ O(1ogc) as c -+ 0, it follows that 

Thus we have (cf. figure 3) 
Fr(z) -+ 1 -a/cul(O).  (4.21) 

c - a/U'(O) and c N 2*296a/V(O) (4.22) 

along the upper and lower branches of the neutral curve, respectively. For small 
values of c, equations (4.14) and (4.20) give 

from which we have (cf. figure 2) 

R N -  'u'(0)lll a-6 along the upper branch 
279 [ U"(0)]2 

(4.23) 

(4.24) 

and R N 1.001 U'(0)  a-4 along the lower branch. (4.25) 

5. The adjoint problem 
The asymptotic theory of the adjoint Orr-Sommerfeld equation has recently 

been developed in some detail (Reid 1965). Although this theory of the adjoint 
equation has much in common with the usual theory of the Orr-Sommerfeld 
equation, some important differences do arise, particularly in connexion with 
the role played by the viscous corrections to the singular parts of the inviscid 
solutions. To examine some of these differences we shall therefore consider in 
this section the calculation of the curve of neutral stability for the asymptotic 
suction profile based on the adjoint formulation of the problem. 

The adjoint problem for the asymptotic suction profile consists of the equation 

( D 2 - a 2 ) 2 $ - ( D 2 - ~ 2 ) D $  = iaR{(D2-a2) ( U - c ) $ -  U$} (5.1) 

together with the boundary conditions 

$ =  ljrl = 0 at y =  0 and $,$'-to as y - +  +a. (5 . la )  

It is again necessary, therefore, to obtain approximations to the two solutions 
of equation (5.1) that remain bounded as y -+ + co. 



728 T. H.  Hughes and W. H .  Reid 

One of the required approximations can be obtained from the inviscid form 

(5 .2 )  

$A(Y) = QA(Y-Yc)  (5.3) 

and @B(y) = (Y-Pc)- ’&B(Y-Yc)  + (u,”/ui) $A(y)lOg (y-yc). (5.4) 

of equation (5.1) 

the solutions of which can be written in the form 

( D 2 - a 2 ) ( U - c ) $ -  Uff$ = 0,  

The functions QA and QB are power series in y - yc, the leading coefficients of 
which are unity, and, to be definite, we shall suppose that $B contains no multiple 
of $A. If we now let Y(y) denote the solution of equation (5.2) that remains 
bounded as y+ +a and normalize it by the condition Iim{(y--yc)Y(y)) = 1, 

(5.5) 
then we have l / 4 Y C  

Y(Y) = A$A(!d + $*(Y), 
where A is the same constant appearing in equation (3.3). 

It will be noticed that PA, like #A,  is regular at the critical point, but that 
lcrg has a stronger singularity there than $B. In  fact, both terms in equation 
(5.4) are singular at the point y = yc, the first like (y-yC)-l and the second like 
log (y - yc). Thus, to determine the correct branch of the multivalued solution 
@B, it is necessary to consider at least two so-called ‘viscous corrections’. 

To obtain approximations to the viscous solutions of equation (5.1) and the 
viscous corrections to $B, we first let 

$(y) = X ( t ) ,  where 5 = (y-yc)/e and e = ( iaRU;)- i .  (5.6) 

Then X ( 5 )  satisfies the equation 

(&--a2e2)’X-e(&-a2e2) -&X = iaReZ( ( g i - a 2 e 2 )  ( U - c ) X - s 2 U ” X  I . 
(5.7) ~, 

If the solution of this equation is now expanded in the form 

X ( 6 ,  E )  = X(0) (5) + €( u;/u;) X(1) ( 6 )  + . . . , ( 5 4  

then X(O)(E) and X(U(5) satisfy the equations 

and 

(5-9) 

(5.10) 

The solutions of equation (5.9) can be taken in the form 

Xio)(5) = 1, X P ) ( t )  = €-l&3(E), 

Xdo)(5) = (eU;)-&Pl(5) and X$) (5) = (€U;)-&P2(5), 
where 
is defined by 

= Ai (6)  and P2(6) = Ai (5ej”i)  are Airy functions. The function Q3(6) 

Qd6) = 2 d r i  PA51 s’ PA&) d t  - PA51 s’ G(5) d t )  (5.12) 

where the lower limits of integration (a1 or a,) denote paths of integration that 
tend to infinity in the sectors X, (largcl < @) or S,( -7r < arg t  i -in) of 
the 5-plane respectively. 

W P  m, 
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The solution Xio) must clearly be identified with the leading term in the expan- 
sion (5.3) of the regular inviscid solution $A. The solution X$O), however, provides 
one of the required viscous corrections to $B. This can easily be seen from the 
fact that for I[] 9 1,  X$J)([) - (e[)-l in the sector -n < arg[ < +n and is 
exponentially large in the sector Jn < arg [ < n; it must therefore be identified, 
in some sense, with the term (y - yc)-l in $B. At this stage, it  would be tempting, 
formally following Tollmien (1929; see also, Lin 1955, p. 128), to write down an 
'improved ' approximation to $B in the form 

@B(y) = xao)(6) [&B(Y-Yc) f (uf/uA) $A@) (Y-.!/c)log (Y-YC)], (5'13) 

where the remaining singularity in this solution is then as weak as 

(Y - Y J  1% (Y - Y C L  

i.e. as weak as the singularity in the uncorrected form of c $ ~ .  This form for 1CrB, 
if it were correct, would have the advantage of leaving the viscous and inviscid 
parts of the characteristic equation completely separated, and thereby permitting 
a direct solution by means of the usual graphical construction. Calculations 
based on this form of @B, however, led to totally unrealistic results, far worse, 
in fact, than when the uncorrected form of $B was used. It would appear, there- 
fore, that equation (5.13) does not provide a valid approximation to $B. What, 
then, is the correct interpretation of the viscous solutions Xio), Xio), .. . ? 

On closer examination of the expansion (5.8), which is actually a convergent 
expansion in E for finite values of y, it  would appear that these viscous solutions 
can provide only term-by-term improvements to $B. Thus, to this order, we are 
led to consider the approximation 

1 U: 
$B(Y) = XP)(6) + ~ [&B(Y - Y,) - 11 f --i @ A Y )  1% (Y - Yc) 

Y-Yl! 0, 
(5.14) 

obtained by simply replacing the term (y - yC)-l in $B by XJ0). The remaining 
singularity in this approximation is then only as weak as log (y - yc), i.e. stronger 
than the singularity in the uncorrected form of #B. The calculations described 
below, based on this approximation to $B, strongly suggest, however, that this 
approximation is completely adequate for most purposes. 

To determime the correct branch of the logarithm appearing in $B, it  is 
necessary to consider the second viscous correction Xi1). This aspect of the theory 
has been discussed in detail by Reid (1965) for the adjoint Orr-Sommerfeld 
equation and need not be repeated here. One remark should be made, however, 
in this connexion. In  the present discussion of the stability of the asymptotic 
suction profile explicit account has been taken of the fact that the basic 
flow is not strictly parallel. As a result, equation (5.10) contains the additional 
term d3X(O)/d63 which is absent in the case of strictly parallel flows. Fortunately, 
however, this term does not affect the leading term in the asymptotic expansion 
of Xi1) and so does not affect the determination of the correct branch of the 
logarithm in @B. It does, of course, affect the behaviour of Xi1) for finite values 
of [, and this fact shows that there is an intrinsic limitation in the usual stability 
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analyses for nearly parallel flows of the boundary-layer type. A similar remark 
applies to the first viscous correction to #B. 

Finally, it may be noted that the viscous solutions Xio) and Xio) are solutions 
of a second-order equation and thus no quadratures are required as in the corre- 
sponding viscous approximations to the Orr-Sommerfeld equation. 

The solution of the adjoint characteristic equation 

Having obtained suitable approximations to four solutions of the adjoint equa- 
tion, we turn now to  consider the solution of the characteristic equation for the 
adjoint problem. For this purpose it is convenient to define a complex parameter 
u?(a,c) in terms of $(y) in exactly the same way that w(a,c) was defined in 
terms of @(y) [cf. equation (4.2)]. Thus we let 

(5.15) 

Since Y is proportional to @/( U - c), w and wt are related by 

(5.16) 

As a first approximation to $, consider a linear combination of Y(y) and 
Ai ( E ) ,  where Y is taken as a linear combination of $A and the uncorrected form 
of $B. In  this approximation, the characteristic equation can be written in the 

form w. equation ( 4 4 1  (w+- 1)1(1 Wt = Pt(z), (5.17) 

where Pt(z) is the adjoint Tietjens function defined by 

Pt(4 = Ai (El)/ElAi’(tl) (5.18) 

and tl = ze-gni with z real in the neutral case. Like the Tietjens function, Ft(z)  is 
a universal function, independent of the basic velocity profile. Tables of Ft(z) 
and P”(z) have been given by Reid (1965) for z = 0.1 (0.1) 2 (0-5) 10; 48. 

The curve of neutral stability based on equation (5.17) can now be obtained 
in a direct manner by means of the graphical construction described in $ 4 and 
shown in figure 5. The left-hand side of equation (5.17) was computed by using 
the numerical procedure outlined in $ 3  and the relationship (5.16) between w 
and wt. The curve of neutral stability obtained in this way is shown as the long- 
dashed curve in figure 2. 

Since a -+ 0 as R -+ 00 along both branches of the neutral curve, we can use 
the small a approximation to w obtained in $4 to derive the asymptotes to the 
neutral curve. Fromequations (4.ll)and (5.16), andusing the fact that U’(0) = 1, 

t t (w - l ) /w = w-1. 

we have 

1 [ + Qo(0)+O(a) = F’(z), 
1 

_____  
l + h  a(l-c)2 

(5.19) 

where, for small values of c, 

Re (Qo(0)) = - l / c  + O(logc), Im (sZo(0)> = n/( 1 - c)2 

and l + h  = 1+&+0(c2). 

From these results it follows that 

P:(z) -+ c/a- 1 as a+ 0. (5.21) 
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FIGURE 5. The graphical solution of the adjoint characteristic equation (5.17). The circled 
point corresponds to the minimum critical Reynolds number. 

Since z tends to a finite value zo (say) as R -+ 00 along the lower branch and 
Ft(z )  -+ 0 as z + 00 along the upper branch (cf. figure 5 ) ,  we have 

c N [l+F:(zO)]a and c - a (5.22) 

along the lower and upper branches, respectively. Equation (5.18) shows that 
$(z)  -+ 0 like c along the lower branch so that zo is defined by the conditions 
P:(zo) = 0 with B':(zo) + 0. From the tables of F'(z) we obtain zo + 0.661 and 
3':(zo) + 3.253. Since z = (aRU$yc, we see that the lower asymptote to the 
neutral curve is given by the equation €2) = 0.1565a-t. Along theupper branch 
z + 00 and since the leading terms in the asymptotic expansions of P(z) and 
F'(Z) are the same, it follows that the upper asymptote is the same as the one 
given by equation (4.24). 

Because the singularity in $-B is stronger than the singularity in q5B, the lack 
of agreement between these two neutral curves is not entirely unexpected. In  a 
consistent approximation i t  is clear that one must include the viscous solution 
XJ0)(<). As already mentioned, the 'improved' approximation to $B given by 
equation (5.13) is not satisfactory and, for a second approximation to @, we 
therefore take 

$(y) = Y(y)  - (y - yC)-l+ @Q3([) + constant Ai(<), (5.23) 

where Y(y )  still denotes the uncorrected inviscid solution (5.5). In  this approxi- 
mation the characteristic equation can be written in the form 

(5.24) 

where = ze-gni as before. 
Since it is not possible to write equation (5.24) in a form that separates the 

viscous and inviscid terms, the usual graphical method of solution cannot be 
used. Equation (5.24) can be solved, however, by first choosing a value of z and 
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then plotting the real and imaginary parts of both sides of the equation, the left- 
hand side being evaluated for various values of a and c. An example of such a 
plot is shown in figure 6 for z = 2.7. The necessary tables of Q3(t1) and 
have been given by Reid (1965) for x = O(0-2) 10; 48. In this way, the curve 

r 

I I I I I I I I I I 
0-13 0.14 0.15 0.16 0-17 

Re 

FIGURE 6. An example of the graphical solution of the adjoint 
characteristic equation (5.24) for z = 2.7. 

r 

I I I I I I I 
1600 1800 2000 7700 

Rf 
FIGURE 7. The kinks in the neutral curves based on equation (4.1) (solid curve) 

and equation (5.24) (dashed curve). 
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of neutral stability can be found, point by point, by computing and plotting a 
new graph like figure 6 for each value of z. 

To avoid the need for such a graphical construction for each value of z ,  which 
is a tedious procedure a t  best, a method was devised that uses a high speed com- 
puter to solve directly a characteristic equation of the form (5.24). Having fixed 
the value of x ,  an estimate is first made of the values of a and c that will solve the 
characteristic equation. Next we compute the length S= IP'(z) - G(a,  C, x ) l ,  
where G(a, c ,  z )  denotes the left-hand side of equation (5.24). The parameters a 
and c are then varied until S is as small as desired. In  this way it is easy to obtain 
as many points as may be required on the neutral curve. The results of such 
calculations, based on the characteristic equation (5.24), are shown in figures 2, 
3, and 7. 

The excellent agreement between the curves of neutral stability computed 
from equations (4.1) and (5.24) is further emphasized by the fact that both the 
upper and lower asymptotes are virtually identical. Along the lower branch of 
the neutral curve, a and c both tend to zero and in this limit equation (5.24) 

(5.25) becomes 

Since A(a) N l/a as a -+ 0 and yc N c as c -+ 0, the limiting form of this equation 

(5.26) becomes 
~ / a  = C i Q k L )  - t?Qb(ti) P'(z). 

If we denote the right-hand side of this equation by Q(z ) ,  then in this limit there 
must exist a value of z, z; say, such that 

c / a  = Q1.(zh) and Qi(zh) = 0. (5.27) 

From the tables of Pt(z) and Q3(tl) we find that 2; + 2.2972 and + 2.2957, 
and hence that R* N 1-001a-t. To the present accuracy, this result is identical 
with equation (4.25). Along the upper branch, z +- cx) and equation (5.24) then 

- - W O ) / Y C ~ ' ( O )  = Y+(x), (5.28) 
has the limiting form 

which, by equation (5.13), can be shown to be identical with equation (5.15). 
The upper asymptote must therefore be the same as equation (4.24). 

r -Wm + tlQ3(tl)I/t;QaEJ = P+W 

6. Concluding remarks 
The exact solution of the inviscid equation presented in $ 2  is of importance 

largely because of the insight i t  provides into the structure of the inviscid 
solutions. It shows, for example, the important role played by analytical con- 
tinuation in the case of flows of the boundary-layer type. More generally, the 
inviscid solutions would have to be found by the numerical procedure described 
in $3, or some modification of it. When this numerical method of solving the 
inviscid equation is combined with the fully automated methods of solving the 
characteristic equation described in $5, the calculation of a curve of neutral 
stability becomes almost a routine matter. 

The present discussion has been limited to the case of neutral stability for 
which c is real. But it is clear that this exact solution of the inviscid equation 
could also be advantageously used to study a number of other aspects of the 
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stability problem such as the inviscid initial value problem, the higher, damped 
modes for the viscous problem, or the spatial stability problem in which a c  is 
real but cc may be complex. 

A point of some theoretical interest that emerges from this work concerns 
the kink on the upper branch of the neutral curves shown in figures 2 and 7. 
Based on the usual asymptotic approximations to the solutions of the Orr- 
Sommerfeld equation, we have the characteristic equation (4.1) and, in this 
approximation, the kink can clearly be traced to the loop in the Tietjens function 
shown in figure 1. This is only a very superficial explanation, however; more 
fundamentally, the existence of such a kink, which would seem to be without 
any physical significance, would strongly suggest some defect in the viscous 
approximations being used. When the kink was first discovered-and this was 
long before the asymptotic theory for the adjoint equation had been developed- 
it was natural to look for an explanation of it in terms of the viscous correction 
to @B. At that time, even this explanation was not wholly convincing in view of 
the fact that the kink occurs at such a large value of z. Once the calculations 
described in § 5 had been completed, however, it  became immediately clear that 
in the adjoint formulation of the problem a t  least the first viscous correction 
must be included to obtain an adequate approximation and that this viscous cor- 
rection is actually responsible for the appearance of the kink. It is thus reason- 
able to suppose that if the first viscous correction to $B or the first two viscous 
corrections to lcrg were included, then the kink might again disappear. 

In  this connexion it is necessary to consider precisely how the viscous correc- 
tions should be applied. In  the method first suggested by Tollmien (1929), 
the singularity in @B is removed by introducing a viscous function in such a way 
that the corrected form of $B is regular at the critical point. Whereas, according 
to the present point of view (see also Reid 1965 for a more detailed discussion), 
the first viscous correction to $B should only be used to replace the term 

(Y - Yc) 1% (Y - Yc) 

in the series representation of $B, leaving thereby a weaker singularity of order 

Although Holstein (1950, see also Stuart 1963) has given tables of the first 
viscous correction to $B based on the Orr-Sommerfeld equation, no attempts 
have previously been made to include this viscous correction in the calculation 
of a neutral curve because of the difficulty in solving the resulting characteristic 
equation. Since this last difficulty has now been overcome by the method de- 
scribed in $ 5 ,  calculations were made of the neutral curve for the asymptotic 
suction profile based on both methods of applying the viscous correction to q5B. 
Unfortunately, because of the limited accuracy of Holstein’s tables, the results 
were inconclusive. They suggest, however, that the differences which result 
from the two methods of applying the viscous correction are not large and that 
a discussion of the precise behaviour of the neutral curve in the neighbourhood 
of the kink must await the calculation of more accurate tables of the viscous 
correction to $B 

(Y-YJ2log ( Y - Y J  
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